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Abstract. The population dynamics model known as the Malthus-Verhulst model is shown 
to exhibit, for particular values of the rate parameters, a new regime characterised by a 
relaxation time which is exponentially small in inverse of the competition rate between 
individuals of the species. This result is obtained by means of a representation of the 
time evolution of the system in terms of a stochastic process which describes the Brownian 
motion of a particle under the action of a unidimensional periodic potential. The long-time 
behaviour of the first moment of the population is calculated by a suitable extrapolation 
of a perturbative expansion around the Wiener process result. 

1. Introduction 

The Malthus-Verhulst (MV) model was originally introduced as a model for population 
dynamics and it had many applications in this respect. More recently (Schlogl 1972, 
McNeil and Walls 1974, Chaturvedi et a1 1976, Gardiner and Chaturvedi 1977, Van 
Kampen 1976, Goldhirsch and Procaccia 1981) the model was considered a prototype 
to describe an autocatalytical chemical reaction. Within this phenomenon an analogy 
with second-order phase transitions has been established. Another interpretation of 
the model as describing the photon population in a laser cavity was introduced by 
McNeil and Walls (1974). It may be pointed out that in the chemical interpretation 
of the model the rate parameters v, y are considered as depending on the size of the 
system: this means that the immigration v and the competition y are thought to be 
respectively directly and inversely proportional to the volume fl. Such being the case, 
the evolution of the system in the limit f l + w  may be described by a macroscopic 
decay equation for the concentration: 

This equation shows an instability point for v / f l  = 0 and p = A. This instability 
remains in a context that admits the presence of fluctuations (De Pasquale e? a1 1980, 
1981). Moreover, it is to be noticed that in terms of population dynamics, the 
immigration rate v is not necessarily proportional to the system size s1, and the case 
of a large size is not necessarily the only physically interesting one. From this point 
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of view there is no longer a clear distinction between macroscopic behaviour and 
fluctuations, so that we may expect new instability phenomena, unexpected from the 
previous macroscopic analysis, to occur. This paper shows that this is the case of the 
MV model. 

The instability phenomenon will be associated in the following with the qualitative 
modification in the time evolution of the system. From this point of view an instability 
phenomenon can be associated not only with the steady state but also with the transient 
behaviour of the system. 

The method used to find the model instabilities is based on the possibility of 
introducing a stochastic variable x which allows us to describe the population moments 
and in terms of which it is easy to perform a qualitative analysis of the time evolution 
of the system (see 9 2).  

This x representation has been introduced by De Pasquale et a1 (1980, 1981): I 
just mention that the x representation is defined for Y 2 A/2, p 2 y. The parameter 
region in which 0 < Y < A/2, 0 < p < y can exist physically, but cannot be described 
with this representation, and it is still unexplored. It may be studied by a representation 
in which an analytical extension to a complex space should be made (Gardiner and 
Chaturvedi 1977). 

In the x representation the time evolution of the system is equivalent to the 
stochastic, overdamped, unidimensional motion of a particle under the action of an 
external potential and an additive Gaussian stochastic force. This external potential 
appears to be a periodic one with singularities at x = *n.rr/2. Accordingly the motion 
of the particle whose initial position is at x = 0' (this state corresponds to a vanishing 
population at t = 0) is confined between x = 0 and x = 7r/2 where two repulsive barriers 
appear. The first instability appears when U = A/2 and is associated with a doubling 
of the potential period. The motion of the particle whose initial state is x = 0 is now 
confined to the range -.rr/2 s x s ~ 1 2 .  

The initial state appears to be stable if p - y < A and unstable if p - y > A .  This 
instability induces qualitative differences in the transient behaviour of the population 
during the decay from the initial state to the stationary one (De Pasquale et a1 1980, 
1981). 

The second instability for v = A/2 and p = y corresponds to the vanishing of the 
singularities of the potential, so that the motion of the particle is extended to the 
range --CO s x s +-CO. 

In the latter case the x process can be seen as the motion of a particle subjected 
to a Gaussian stochastic force and whose velocity is given by a deterministic force 
equal to the derivative of a periodic potential. It is expected that for long times the 
motion of this particle should be a diffusive motion controlled by the probability of 
overcoming the peak value as a consequence of the stochastic perturbation. In these 
conditions there follows a decay to the equilibrium state of the population, exponen- 
tially much slower than that which occurs when the x variable is confined on a finite 
range of the real axes. 

In 8 2 the x representation is introduced and its main properties are summarised. 
In § 3 the qualitative analysis of the behaviour of the stochastic x process is described; 
in 0 4  an evaluation of the x moments is performed in the extreme case of large y 
up to the l / y  second order, so as to show that the process becomes a diffusive one; 
the related calculations are shown in the Appendix. 

In 0 5 the results for the evolution of the population are concluded and the 
extrapolation to small values of y is obtained. In § 6 results are discussed. 
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The model considered is 

h IJ 

A d 2 A ,  AFtR, 
Y Y 

where A is the component whose evolution is studied, R is an external reservoir able 
to emit and absorb A and A, ,u, U, y are the rate parameters. Its evolution is governed 
by the stochastic differential equation (De Pasquale et a1 1980, 1981) 

d a  = a ( a ) d t + b ( a ) d w ( t )  (3) 

where the drift term is 

a ( a ) = v + ( A  - ,u )a-ya*  ( 3 a )  

and b (a )  dw(t), which is the term of stochastic noise, is a Wiener process: 

(3b) 2 1/2 b ( a ) d ~ ( t ) = [ 2 ( A ( ~ - y a  )] dw(t). 

In another paper (De Pasquale eta1 1980) has been introduced the stochastic x process 
related to a by the relation 

a = (A/y) sin2 x (4) 

as it arises from an integral representation of the population moments generative 
function. Its evolution is governed by the equation 

dx = -(dV(x)/dx) dT+(y/A)’”dw(T) (T  =$At) ( 5 )  

where the noise term is only an additive term, and 

so that the stochastic process may be seen through the motion of a particle in the 
potential V(x) under random pulses. The study of the potential V(x) shows (De 
Pasquale et a1 1980) the existence of instabilities depending on sudden changes of 
the potential form (when U = A / 2  and when p = y). In particular, for v = A / 2 ,  ,u - y = A  
a critical point appears. Instabilities appearing in correspondence to the change of 
form of this potential when v = A / 2  have been discussed elsewhere (De Pasquale et 
a1 (1981)). But where both ,u = y and v = A / 2 ,  there is another change of the potential 
shape that becomes suddenly periodic, 

( 6 )  V ( x )  = $ cos2 x. 

As the x process is expressed as a particle moving in a force field with a period 7, 

and since all the a moments are related to the x process moments, the study of the 
behaviour of the a process can be carried out through the study of a one-dimensional 
periodic potential. 
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3. The x process 

It is known (Galleani et a1 1978) that a Brownian particle in a one-dimensional 
periodic potential has a diffusive motion with a diffusion coefficient that is, in our case, 

D = ( y / 2 A ) G 2  ( A / ~ Y )  (7) 

where & ( A / 2 y )  is the modified Bessel function. 
However, I do not know the whole statistics of the process, because higher moments 

than the second one are known only asymptotically for long times, so that we cannot 
foretell if the sum of all the moments (9 5 )  might, for long times, involve the knowledge 
of other eigenvalues besides the ground state one (Galleani et a1 1978). The form of 
the diffusion coefficient (7) shows that there is an increasing diffusive motion while y 
increases. Exactly what we could expect; in fact, if we examine the process equation 

d x = s i n x  cosx d.r+(y/A)"*dw(r) (8) 
it may be noticed that the stochastic term is determined by the ratio A /  y :  as A /  y + CO 

the stochastic term is very much smaller than the drift one, so that the deterministic 
motion is prevalent and the particle is bound in its potential well for infinite times. 
This explains too why it is impossible to obtain the correct diffusive process by a 
perturbative expansion around y = 0: it would mean remaining in regions in which 
the deterministic motion is prevalent and the particle cannot overcome the potential 
barrier. From another point of view, this limit corresponds to the infinite volume 
limit in which we could consider the x process as describing a global system where 
diffusion is forbidden (Arnold 1979). 

In the opposite limit (large values of y ) ,  the stochastic term is much greater than 
the drift one, and the particle no longer sees the periodicity of the potential: its 
behaviour is the one we expect for a free particle subjected to random pulses, that is 
to say a Brownian motion with a Gaussian distribution. 

4. Long-times x moments 

Among the possibilities I have to show the whole statistics of the process, I single out 
the clearest method (even if it is not mathematically rigorous). 

The considerations made before suggest scaling the time so that it is possible to 
study easily the equation in the perfectly known limit A /  y + 0 (Wiener process) and 
to construct a perturbative theory around this known limit by introducing a small 
periodic potential. 

Let us define the time 7 = yr/A so that the equation for the x process becomes 

dx = qc(x) dS+dw(T) where c ( x )  = sin 2x, q = A /  y. (9) 
For q + 0 it is possible to construct a perturbative expansion in q, and to study the x 
moments up to any order in q. By Ito's method, it is possible to construct the x 
moments: 

d(x")/di = qn(x"-'c(x))+$n(n - 1 ) ( ~ " - ~ ) ,  

d(x")'"/d7 = $n(n - l ) ( ~ " - ~ ) ( ~ ) ,  

(10) 

which perturbatively becomes 

(11) 



New instability phenomenon in MV model 

d(x")"'/d7 = vn(x"-lc(x))'o'+fn(n - l)(x ) . 

1845 

(12) 

At once it may be noticed that all the odd moments are zero at any order, because 
they involve only the odd moments of dw(7). For the even moments a close set of 
equations solvable by induction may be written up to any order K in v. 

n-2 (1) 

For n = 2, n = 4 for long times, the result is (up to order q 2 )  

(x 2 ) = (1-$)7, (x") i -rm = 3( 1-$)'t2. 
i - rm  

The second moment corresponds to Galleani's result for the diffusion coefficient (see 
equation (7)) up to the A /  y second-order limit. 

Up to any order generally the following relation is satisfied: 

so that for long times the x moments are all Gaussian ones. In the Appendix it is 
shown, up to order q2, that if this relation is true for n = 1, it is also true for n = I +  1. 
An extrapolation at any order q k  gives the relation (14) so that the effect of the 
introduction of the periodic potential is to change the diffusion coefficient D = D ( A / y ) ,  
but for long times this introduction leaves the process statistics unchanged. 

5. The a process long-times behaviour 

Let me now show that the last relation is sufficient for the knowledge of the long-times 
behaviour of the a moments. In fact from (6), we have 

(am(t))  = (A/y)"(sin2" x) (15) 

so that by a series expansion, we have 

where 

Nb" = (i)2m(A/y)m2m!/m!2 

and 

(2ri)" 
Nr(7)= -(x2"). 

,,=o n !  

But, as has been shown before (equation (14)), 

(x'") =xo(n,  q )  + (2n - 1)!!D7" +terms which decay for long times 

so that, by trivial calculations, 
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where D is the diffusion coefficient calculated by Galleani (equation (7)) and N o ( A / y )  
can be calculated directly from the steady generative function (De Pasquale et a1 1980) 

j;'' dx exp[-(A/ y )  cos' x]  exp[(A/y)(z - 1) sin2 x] 
j;l2 dx exp[-(A/y) cos' x]  G,(r 1 = 

There results for r = 1 

where 10(A/2 y )  is the modified Bessel function. 
Let us study for a moment the relation (17): by remembering (7), we see that the 

decay process to the steady state is governed by A /  y. We know that the Bessel function 
lo(A/2y) = A / y + o  1 +:(A/2y)' and diverges as ( T A / ~ ) - " ~  exp(A/2y) (Abramowitz and 
Stegun 1970) for A/y+co,  so that for long times we can expect a very slow decay to 
the steady state in the limit of large volumes. This behaviour can be compared with 
the case of the ordinary regime in which V(x) is a simple well in the range (0 - ~ / 2 )  
(when U > A/2, p > y ) .  In this case a perturbative expansion around y = 0 gives 

so that we have a passage from a decay 
exp[-$dt  exp(-A/ y)] which is a much slower one. 

, which for p + y is e-Af, to a decay 

6. Conclusion 

We have studied the MV model in the particular case in which U = A/2, p = y and we 
have seen that its process can be analysed through the process of a particle in a 
one-dimensional periodic potential; we have seen that such a process is a Gaussian 
one for long times so that we have calculated the long-time population moments and 
have shown that the point Y = A/2, p = y is an instability point in which we have a 
passage from a behaviour e-" to a behaviour exp[-t.rrht exp(-A/y)]. 
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Appendix 

The set of equations for the even moments of the x process is 

d(x2")'K'/dS = 7n(x2'-l sin 2 ~ ) ( ~ - l ' +  n(2n - 1 ) ( ~ ~ ~ - ~ ) ' ~ ) ,  (AI)  
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- + m q [ ( x 2 n - 2  cos 2(m - 1 ) x ) ( K - 1 ) - ( x 2 n - 2  cos 2(m + I ) x ) ' ~ - ~ ' ]  

+ (n  - 1)(2n - 3 ) ( ~ * " - ~  cos 2 m ~ ) ' ~ ' -  2m(2n - 2 ) ( P 3  sin 2 m ~ ) ' ~ '  

- 3 ( 2 m ) * ( ~ ~ " - ~  cos 2 m ~ ) ' ~ '  K , m , n = 0 , 1 , 2  , . . . .  (A31 
This is a closed system up to any order and it can be solved by induction. In fact, for 
long times this set of equations can be written, up to order q2, 

d(x2") 
= qn(x'"-' sin 2x)'"+ n(2n - I ) [ ( X ~ " - ~ ) ' ~ )  + (X"- ') ' ' ) ] ,  (A41 di  i+m 

where it has been observed that 7-order terms decay rapidly; for long-times terms as 
( x k  cos 2(m + l)x), ( x k  sin 2(m + 1)x) equally decay and terms as ( x ' " - ~ - '  sin 2mx), 
( X 2 n - k - 1  cos 2mx) are negligible because small compared with (x '" -& sin 2mx),  
( x 2 " - &  cos 2mx) respectively. By supposing that relation (14) is true for n = 1, the 
solution of this set of equations (A4)-(A6) gives, by using (13), for n = 1 + 1: 

so that by trivial calculations 

1 2 1 -  where we have put (1 - B V  ) - 1 - l q 2 / 8 .  This can be done for any order, so that it 
is established that for long times the x process is Gaussian. 
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